On Modular Extensions to Nim

Karan Sarkar
Mentor: Dr. Tanya Khovanova
Fifth Annual Primes Conference

16 May 2015

An Instructive Example: Nim

The Rules

- Take at least one token from some chosen pile.
- Player who takes last token wins.

An Instructive Example: Nim

The Rules

- Take at least one token from some chosen pile.

■ Player who takes last token wins.

An Instructive Example: Nim

The Rules

- Take at least one token from some chosen pile.

■ Player who takes last token wins.

An Instructive Example: Nim

The Rules

- Take at least one token from some chosen pile.
- Player who takes last token wins.

An Instructive Example: Nim

The Rules

- Take at least one token from some chosen pile.
- Player who takes last token wins.

Nim Positions

Position Notation

A position with piles of sizes $a_{1}, a_{2}, \ldots, a_{n}$ is denoted as the ordered n-tuple:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Definition

A P-position is a position that guarantees a loss given optimal play

Definition

An N -position is a position that guarantees a win given optimal play

The Winning Strategy for Nim

Theorem (Bouton's Theorem)

The position $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a P-position in Nim if and only if

$$
\bigoplus_{i=1}^{n} a_{i}=0
$$

Definition (Bitwise XOR)

The \oplus symbol denotes the bitwise XOR operation.
1 Write both numbers in binary.
2 Add without carrying over.

m-Modular Nim

The Rules

■ Take at least one token from some chosen pile or km tokens total.

■ Player who takes last token wins.

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

An Example: 3-Modular Nim with 2 Piles

2 Heap m-Modular Nim for Odd m

Theorem

For odd m, a position of m-Modular Nim with 2 heaps is a P-position if and only it is of the form (i, i) for integers i where $0 \leq i<m$.

An Example: 6-Modular Nim with 2 Piles

An Example: 6-Modular Nim with 2 Piles

An Example: 6-Modular Nim with 2 Piles

Another Example: 12-Modular Nim with 2 Piles

Another Example: 12-Modular Nim with 2 Piles

Another Example: 12-Modular Nim with 2 Piles

m-Modular Nim for 2 Heaps

Theorem

Let $m=2^{i} \cdot k$ where k is odd. A position is a P-position if and only if it is of the form:

$$
\left(2^{j-1} \cdot b+a,(k+1) 2^{j-1}-1-a\right)
$$

for all $0 \leq a<2^{j-1}, k \leq b<2 k$ and $0 \leq j<i$.

Corollary

Let $m=2^{i} \cdot k$ where k is odd. There are

$$
m\left(\frac{i}{2}+1\right)
$$

P-positions in m-Modular Nim with 2 heaps.

7-Modular Nim with 3 Heaps

A Snapshot of Nim with 3 Heaps

A Snapshot of Nim with 3 Heaps

A Snapshot of Nim with 3 Heaps

7-Modular Nim with 3 Heaps

m-Modular Nim for odd m

Theorem

A position $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a P-position if and only if:
$1 \bigoplus^{n} a_{i}=0$.
$2 \sum_{i=1}^{n} a_{i}<2 m$.

14-Modular Nim with 3 Heaps

14-Modular Nim with 3 Heaps

14-Modular Nim with 3 Heaps

7-Modular Nim with 3 Heaps

m-Modular Nim for Even m: A Partial Result

Theorem

If a position $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a P-position in m-Modular Nim for m odd, then it is a P-position in $2 m$-Modular Nim.

Future Research

- What happens in Miseré Modular Nim?

■ How do the P-positions for even m behave?
■ What happens one can take away $k m+r$ tokens for other values of r ?

■ What about other polynomials?

Acknowledgments

I would like to thank
■ My mentor, Dr. Khovanova: for her suggestion of the project and guidance

■ MIT PRIMES: for the opportunity to conduct research
■ My parents: for their encouragement and transportation

